Why an mRNA vaccine requires 2 shots…

..

Excerpts from:

January 28, 2021

Why it takes 2 shots to make mRNA vaccines do their antibody-creating best

by William Petri, The Conversation

Why you need two doses 3-4 weeks apart

Two doses, separated by three to four weeks, is the tried-and-true approach to generate an effective immune response through vaccination, not just for COVID but for hepatitis A and B and other diseases as well.

The first dose primes the immune system and introduces the body to the germ of interest. This allows the immune system to prepare its defense. The second dose, or booster, provides the opportunity for the immune system to ramp up the quality and quantity of the antibodies used to fight the virus.

In the case of the Pfizer and Moderna COVID-19 vaccines, the second dose increases the protection afforded by the vaccine from 60% to approximately 95%.

What the immune system does between the first and second dose

The biology through which the mRNA vaccines induce their protection from COVID-19 is fundamentally different from that with other vaccines.

Pfizer and Moderna vaccines use messenger RNA that encodes the spike glycoprotein. Upon injection of the vaccine, the mRNA enters into immune cells called dendritic cells. The dendritic cells use the instructions written in the mRNA to synthesize the hallmark spike glycoprotein, which characterizes the SARS-CoV-2 virus that causes COVID-19. These immune cells then show the spike glycoprotein to B-cells, which then make anti-spike antibodies.

The mRNA vaccines are uniquely capable of inducing a special kind of immune cell – called a T-follicular helper cell—to help B-cells produce antibodies. The T-cells do this through direct contact with the B-cells and by sending chemical signals that tell the B-cells to produce antibodies. It is this help in antibody production that makes these vaccines so effective.

But not all B-cells are the same. There are two kinds that make anti-spike antibodies: long-lived plasma cells and memory B-cells. The long-lived plasma cells, as their name implies, live in the bone marrow for years after vaccination, continuously churning out antibody—in this case anti-spike antibody. These long-lived B-cells do not need to be boosted.

The memory B-cells, on the other hand, live in a state akin to hibernation. They do not produce antibodies until stimulated by a booster of the vaccine, or are exposed to infection with the coronavirus that causes COVID-19. That is the reason we need that second dose. Together these two types of B-cells provide a constant level of protection.

What happens if you don’t get the Pfizer or Moderna second dose on time?

With current vaccine shortages, and problems with setting up the infrastructure to vaccinate millions of people, many physicians are concerned that the second dose of vaccine won’t be delivered in the prescribed three-to-four-week window.

That booster shot is necessary for the T-cells to stimulate the memory B-cells to produce massive quantities of antibodies. If the booster isn’t given within the appropriate window, lower quantities of antibodies will be produced that may not provide as powerful protection from the virus.

https://medicalxpress.com/news/2021-01-shots-mrna-vaccines-antibody-creating.html

..

This entry was posted in Uncategorized and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s