Carrick Flynn, Brookings: The chip-making machine at the center of Chinese dual-use concerns




Tech Stream

The chip-making machine at the center of Chinese dual-use concerns

June 30, 2020

Carrick Flynn

Employees are seen working on the final assembly of ASML's TWINSCAN NXE:3400B semiconductor lithography tool with its panels removed, in Veldhoven, Netherlands, in this picture taken April 4, 2019. Bart van Overbeeke Fotografie/ASML/Handout via REUTERS ATTENTION EDITORS - THIS IMAGE HAS BEEN SUPPLIED BY A THIRD PARTY. MANDATORY CREDIT.

An extreme ultraviolet lithography machine is a technological marvel. A generator ejects 50,000 tiny droplets of molten tin per second. A high-powered laser blasts each droplet twice. The first shapes the tiny tin, so the second can vaporize it into plasma. The plasma emits extreme ultraviolet (EUV) radiation that is focused into a beam and bounced through a series of mirrors. The mirrors are so smooth that if expanded to the size of Germany they would not have a bump higher than a millimeter. Finally, the EUV beam hits a silicon wafer—itself a marvel of materials science—with a precision equivalent to shooting an arrow from Earth to hit an apple placed on the moon. This allows the EUV machine to draw transistors into the wafer with features measuring only five nanometers—approximately the length your fingernail grows in five seconds. This wafer with billions or trillions of transistors is eventually made into computer chips.

EUV lithography technology has been in development since the 1980s but entered mass production only in the last two years….after more than 30 years of development and billions of dollars in R&D, ASML still faces such a backlog of orders: They are hard to make. EUV machines are at the frontier of human technological capabilities.

China has virtually no lithography experience or industry. Any Chinese firm trying to develop EUV lithography would have to start from scratch. It would have to close the gap with ASML’s billions of dollars, decades of experience, and the accumulated experience and tacit knowledge of their tens of thousands of employees. And it would have to succeed where experienced, billion-dollar companies failed. There is little chance a Chinese company will make an EUV lithography machine in the foreseeable future.

Recognizing the strategic importance of EUV machines, and under pressure from the United States, in November 2019, the Dutch government prevented ASML from shipping an EUV machine to China. Related news coverage painted ASML as a pawn in the U.S.-China trade war, but the Dutch decision was about so much more. There are many strategically important technologies in the development pipeline that are potentially dangerous or destabilizing. They include artificial intelligence, autonomous weapons systems, hypersonic missiles, cyberweapons, surveillance tools, and the latest generation of nuclear weapons. These technologies, and many others, require state-of-the-art chips to develop and deploy.

Carrick Flynn is a research fellow at Georgetown’s Center for Security and Emerging Technology and a research affiliate with Centre for the Governance of AI at the University of Oxford, where he was the founding assistant director.


This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s